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A new approach to the problem of electron states 1in the
protein molecule is described. A "dielectric cavity" nodel is
used to study into the extended states of a protein globule which
are mostly formed by the polarization field of the protein
macromolecule. In a protein solution the size of such a state may
be comparable with the size of the molecule. The share of the
extended states in the biomolecular processes of charge transfer
is discussed. Electron energiles of the ground and the first
excited selfconsistent states are calculated. Typical values of
the predicted energlies of absorption bands and luminescence are
found to be ~ 1000 nm for the ground state's absorption band and
~ 2000 nm for the excited state’'s luminescence. Various ways of

experimental observation of such states are discussed.

@ Scientific Centre for
Biological Research
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1. Introduction

The large-distance electron transfer is one of the central
problems of molecular biology. That the electron can move to a
large distance in biological systems is presently a
well-established fact. Theoretical studies in this field were
stimulated by de Vault and Chance /1/ who measured the
temperature dependence of the rate of electron transfer from
cytochrome C to chlorophyll. Currently, the predominate point of
view attributes this transport to multitunnelling with
unambiguously identifiable intermediate , as one of the possible
mechanisms of this phenomenon /2/. The theoretical foundation of
electron transfer in application to biological systems is due to
Foerster/3,4/, Marcus /5/, Jortner /6/ and Hopfield /7,8/, who in
turn proceeded from the idea of nonradiatory electron transfer in
condensed media, which was first suggested by Peckar /9/, and
Huang and Rhys /10/. The central point which allowed a deep
insight into the processes of electron transfer in biological
systems and which remains vital in modern exploration 1in the
field is the representations of polaron states 1in condensed
systems, the basic idea of the theory of nonradiatory electron
transfer. (Recall that this theory started from the ‘“polaron
Hamiltonain" /9, 10/.) Therefore, research into the theory of the
polaron 1in condensed systems may significantly broaden our
knowledge of the electron states and transfer 1in blological
systems.

The most general representation of the polaron may be given
by the picture of an electron which, 1if placed into a polar
medium, goes to a selflocalised state where it does not form
chemical bonds with the atoms of the medium. This state may be
imagined as an electron being trapped by a potential well formed

by electron-induced polarization of the surrounding molecules of



the medium /9/. Using this representation, the authors
discovered that there are multiple, not a one, discrete polaron
states which have their own potential wells consistent with the
electrons trapped /11, 12/. An important principal consequence is
that since the first excited selfconsistent polaron state the
excitation region is very large, and may include for water,
ammonia and other polar liquids about 10> + 10* and nmore
molecules of the medium.These findings in their turn point to the
necessity of critically analyzing the problem of large-distance
electron transfers, namely their biological role and impacts.
This paper is just concerned with studying into these states in
protein macromolecules. We shall show that the allowance for the
electron large-radius states may lead to multiple new results.
The very fact that they exist suggests new types of absorption
and luminescence in solutions of globular proteins. For a
spherically symmetric protein with electron acceptor 1in the
centre of the globule the presence of an excited polaron state of
large radius implies isotropy of binary chemical reactions under
excitation.

In this paper we want to make the physical representation of
the polaron in a condensed medium agree with the representation
of the polaron properties of the protein molecule. We shall
formulate simple mathematical models of the polaron states in the

protein and discuss some of the effects which they lead to.

2. A continual model.

To introduce into what is meant by Jlarge-radius electron
states in globular protein macromolecules it 1is necessary to

examine continual representations

of these objects. It is also — _—— ~ < ::_
desirable to discuss the hierarchy _ -
of continual models we Wwill |use.

The representation of a protein

macromolecule that takes the form €

of a sphere in the solution as its ”

microphase was introduced by D e = = -_— -

Bresler and Talmud /13/ who Fig. 1. A two-layer model
otein glo .
proceeded from hydrophobic of the pr globule

properties of the protein. A progress in the modeling of protein



globules led, in 1its turn, to a whole line .« of their
electrostatic models /14, 15/. The simplest of them , the
model of dielectric cavity, is shown 1in Fig.1. The model
assumes that €, <€, which corresponds to a low static dielectric
permittivity of the protein medium compared to the strongly
polarized solvent. Stress that this model, though very simple, can
give a qualitative explanation of a good many experimental
findings on protein transport and electrophoresis /16/. An
extension of it to a more realistic situation {is shown in
Fig.2. This model of a three-layer globule allows for the
contribution of polar amino acid residues to dielectric
permittivity in the region

R1<r<R for water molecules

which 2 penetrate into the
superficial layer, the unsmooth
surface and other factors. We
assume that the solvent
molecules cannot enter the

region r<R1. In this model
81<82<CO' Physical values of
dielectric permittivities can

— v —— — —— — — —

be taken from an experiment:
Fig. 2. A three-layer model

81%4 is the value for NN of the protein glogule

-~dimetilacetamid which 1is the
monomeric analog of protein peptide framework (the solvent
impervious region r<R1); so=80 - is the value for water as a
solvent; and the layer R1<r<R2 is ascribed a mean value of 52%40,
which in a more general sense is a parameter of the model. There
are many models which assume that dielectric permittivity inside
the globule depends on a coordinate (like € = I?l /17/), and a
good deal of nonlocal continual models of dlelectric cavity /18/.
The most important parameter for substantiating a
mathematical model of polaron-type electron states in the protein
globule, the parameter which justifies continual approach, 1s the
ratio <r>/a where a is the mean distance between two
neighboring atoms of the protein molecule, and <r> 1is the
effective polaron radius. The estimate a draws a clear
distinction between a protein macromolecule and an lonic crystal
for which the criterion <r>/a >> 1 shows that the model is

continual. In the ionic crystal polarization is caused by a small



deviation of ions from their equilibrium states, so that a ~ @&
where a 1is the lattice. constant, and the protein molecule
requires for an additional averaging if the lifetime of the
electron state is much larger than the characteristic time of
oscillation of twisting degrees of freedom and of deviations of
macromolecular polar groups, which normally is less than 10—125-
This situation is illustrated in Fig.3 which is the result of
a molecular-dynamic computer simulation. In this way for the
below long-living states the model of a polar medium is “"more

continual” in the protein molecule, than in the ionic crystal.

ae b,

Fig.3. A plane projection of the instantaneous configuration
of the main chain (—N—Ca—C—)54 of a ferredoxin molecule, (a),
and overlapped projections for ten consecutive configurations

of this molecule taken with a time At equal to 0.6 ps (b),

3. A polaron model for an infinite isotropic medium

(according to Peckar /9/)

Polaron description of the electron state in a polar medium

usually starts with the assumption that the mean Culomb field



induced by the surplus electron locally polarized the medium.
Electrical field in its turn influences the electron /9/. It 1is
essential that the electron interacts only with the inertia part

of polarization it induces, so that

B2y =B (&) - B (D) (1)
[ ©
where
2 c°~1 3 2 € -1
o~ Zme ' w Ame B
o] o
are specific dipole moments of static and high-frequency

polarizations; eoand €, are static and high-frequency dielectric

permittivities, respectively and B is electron induction. Hence,

B(r)

Biry = =12, (2)
4dne
P e;l- e;‘ is the effective dielectric permittivity. The

vector of electric induction caused by the distributed electron

charge with density elv(2)1? is equal to

3> 3,
B(2) = eflw(?’)lz——£~£——-d?’ , (3)
> 9, .3
fr-r’|
where ¥(7) is the wave function which can be given from the
solution of the Schroedinger equation
h® 2 3 > g
m AV(T) + ell(F)¥(F) + W¥(r) =0 , (4)

where W is the electron energy. The potential M(?), created by
the electron-induced polarization Vﬂ(?) = 4u?(?), can, by (2)
and (3), be found from the Poisson equation

AI(2) + ane Yelw(2)I% = 0 (5)

The system of nonlinear differential equations (4) and (5)
fully determines the state of an electron in an 1infinite polar
medium. Peckar /9/ used variational principle to find the ground
state of eqs. (4) and (5). Balabaev and Lakhno /11/ integrated



them numerically and got solutions corresponding to the excited
polaron states different from the ground state. The approach we
have given here will be used further to describe the polaron

states in. a protein globule.

4. The polaron equation for a protein globule

Qur mathematical model of polaron states in the protein
globule described by the model of dielectric cavity, is based on
the following assumptions:

1) the globule is neutral and has zero effective surface net
charge on the layer boundaries;

2) The electron states in the globule are thought of as the
acceptor’s potential-bound polaron states.

3) Each layer is described by a separate isotropic model of
continual polar medium, and the electron wave function and the
potential are assumed to be smooth both within and on the
boundaries of each layer.

4) All the other assumptions are identical with those
adopted to describe the polaron states in polar media /9/.
For a spherically symmetric case the assumptions 1) - 4) yield

the following equations for the polaron in a protein globule

2 d

3 G5 §5 17 TP e lir)+e(r)¥(r)+Wu(r) = 0 (6)
r
1 d 2 d 4me 2 (7)
—~ =1 —Ir) + =— ¥ (r) =0
r2 dr dr T
i
R1_1< r < Ri' i=1,2...3 ROEO, (8)

where ¢(r) is the potential of acceptor

q/elr+c1, r<R
o(r)= : (9)

q/czr ' r>R

for the two-layer model of the globule (82=e0) and



4 <
q/clr + c r<R
- ‘
o(r) = q/car + ¢, R1<r<R2 (10)

q/c3r s r>R

for the three-layer model of the globule (£3=e°). [[(r) is the
potential of electron-induced polarization, p is the electron

effective mass, &, 5 = s'l-ci1 are the effective dielectric

constants of the i-ih la;er, and €. is the high-frequency
dielectric constant which we assume identical for all the layers.

The natural boundary solutions for eqgs.(6) and (7) follow
from the condition that the wave function 1is bounded and
continual and that the potential is continual on the boundaries

of globular layers, so that

nqe
¥ (0)+ 5 = I’ (0) = o, V(o) = [[(w) =0
e h
1
W(Ri-o) = W(R1+0), W'(Ri—O] = W’(R1+0) (11)

(R;-0) = MI(R;+0); &, II"(R,-0) = &, ,II"(R;+0)

Equation (6) is the Schroedinger equation for the electron in
the potential -([][+®) which is given in a self-consistent way by
(7). So, the nonlinear system of differential equations (6)-(7)
with the boundary conditions (11) describes bound polaron states
in the protein globule. Its solution determines the wave function
of the electron state ¥ and the electron energy W , as well as
the total energy of the state IF,whlch is given by the functional

2 €
I G, = 2o [(ve) %P - efe?(M+e)dr + £ o) I(vn)zd? (12)
F " i
Q.
1
The last term of (12) is integrated over regions Qi, which
correspond to the layers of the dielectric cavity model. We

should stress that equations (6) and (7) may be given by an
independent variation of the functional (12) with respect to the
wave function ¥(r) and the potential N(r) with the wave function

normalized by f¥2(2)dP=1.



5. Solutions of polaron equations. The ground state.

The system (6)-(7) can be integrated numerically. The
details of the algorithm are described 1in Appendix. For a
homogeneous polar medium with all £;=€, it yields the problem
of F-centre in an lonic crystal which was solved by Lakhno and
Balabaev /12/. It will be shown in Appendix that the system
has a discrete set of solutions which are the selfconsistent
states of electron and polarization of the globule and its
surroundings. Figure 4a shows a node-free solution (zero
mode), and Figure 4b the solution with a node which
corresponds to the excited selfconsistent state (first mode).

In this section we only dwell on the findings for the ground

state.
0.1 0. 03¢
1\2
1

0.0 X

' 10° ()

1
1 1 2
-0.1 2 -0.03
a. b

Fig.4. Solutions of the problem (6)~(7) for the two-layer
(1) and the three-layer (2) models of the protein globule: a -
zero mode , b - first mode. The upper part of the figure shows

functions ¥(X) (f4rX?¥®dX = 1) and the lower part shows functions

h2

nx) (= 0.09 [I(X)).

ne
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For tne two- and three-layer models of dielectric cavity
Table 1 1lists the following values which characterize the
selfconsistent ground state: electron (Hls) and total (Ils)
energies; electron levels (nonselfconsistent) in 2S (HZS) and in
2P (UZP) states and the corresponding total energies (IZS’ IZP)'
as well as the states’ radii (<r>15’ <r>, e, <r>2P) for both
the models.

It can be seen that for the more realistic three-layer model

the polaron radius in the ground state is <r>1 =2.3 K, that 1is

S
off the approximation of the continual model. Accordingly, the
quantity AwlS 2p= IHZP - wlsl z 1.2 eV (~1000 nm) falls just into
the region of transitions with charge transfers of

metal-containing proteins /19/.

Table 1

Polaron states’ characteristics in the protein globule

Physical 1) Two-layer model 2) Three-layer nodela)
value O-mode | 1-mode O-mode | 1-mode
”15 ~-1.316 -0.401 -2.200 -1.035
HZS -0.529 -0. 256 -0.697 -0.424
wZP -0.695 -0.283 -0.806 ~-0.413
Lig -0.508 -0.238 ~1.243 ~-0.779
IZS 0.280 -0.093 0.255 -0.169
IZP 0.114 -0.120 0.146 -0.158

<r>ls 3.7 8.3 2.3 3.1

<r>ZS 10.0 19.5 7.6 12.2

<r>,p 6.8 16.0 5.7 11.0

') The values of energies "15' HZS' ”zp and IlS' IZS' I2P are
in eV; the avareged radii <r>ls, <r>zs, <r>ZP in 1.

2) = = = = = =
€, =20, €,=80, ¢ =2, R 15, g m,, Z=1 .

€, =4, €,=40, ¢ =80, ¢ _=2, Rl=7x, R2=1sx. p=n_, 2=1 .

11



6. The excited polaron states in the protein globule

Table 1 lists besides electron (W) and total (1) energiles
and radii <r> in the excited selfconsistent state (2S) and the
nonselfconsistent states 1S and 2P, which correspond to the
potential polaron well 2S (Fig.4b). Note first of all that the
radii of the excited selconsistent states of both two- and
three-layer models, which are 19.5 2 and 12.2 A, respectively,
exceed largely the mean distances between neighbouring atoms a of
the medium, that is continual approximation is reasonably
accurate in this case. Our calculation has shown close electron
energies in the selfconsistent, 2S5, and nonselfconsistent, 2P,
states. In the three~layer case the 2P state has a higher energy
level than the 2S state. Since the dipole transfer to the 1S
state is only legal from the 2P state, the excited selfconsistent
2S state can be expected to have larger lifetime in the
three-layer model.

The table also ylelds the approximate estimate for the
luminescence band for the three layer model, which is szp,1s =
0.61eV (~2000 nm) i.e. lies in the far infrared range. It might
be interesting to experiment with a band that, like the polaron
one, could only be identified by a preliminary estimation of the
qualitative effects pH, ion strength and temperature produce on

the properties of the "polaron bands"”.

7. The dielectric cavity model and the theory of electron

transfer

The above consideration evidences that the electrostatic
model of the protein globule 1is suitable for a consistent
description of various processes pertaining to photoexcitation
and of electron transfer processes. For example,the probability
w that the electron of the excited selfconsistent 2S state of the
protein molecule can tunnel from donor to acceptor, can be given

by the following expression /6,8,20,21/:

E
w = L%exp(~ :T)(n/srT)"zexp(—(Er-J)2/4Err)
(7]

(13)
- - _ 2 .o
E = 1/8x¢ I IB,s - T 06l ® ar,

12



where L is the matrix element of tunnelling; 3 can be determined
from (3), J is the reaction heat, w is the averaged frequency
of polarization oscillations in the molecule, and Er is the total
reorganization energy of the medium. Values L and Dacs can only
be determined if the acceptor model is defined.

It follows in particular from (3) that the tunnelling
probability in the electrostatic model considered is proportional
to the rate of the chemical reaction and relates to the form of
the electron transfer by the tunnelling matrix element L and
inductions st and ﬁacs In this case of extended electron cases
we can expect that the constant of the reaction rate should
relate to pH of the solution and spatial distribution of charged
aminoacid groups, since the induction BZS[WI of (3) depends on
the polaron wave function for the most polarisable parts of the

protein molecule in the layer R1<r<R2 of our model (Fig.5).

p(X)

X (R)

Fig. 5. Distribution of electron density in the
protein globule for the three~layer model of Section 2;
p(X)=4uX2W2(X) H 1 is the zero mode and 2 is the first

mode.
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8. Discussion.

The 1introduced representations of large-radius extended
states enable a completely new approach to the problem of
electron transfer to great distances.The results of Sections 4
and 5 for the model of dielectric cavity show that the radius of
the first exclted state is comparable to the size of the globule,
which suggests that the whole globule is involved in the process
of forming such a state. If acceptor is near the globule and the
extended selfconsistent state has much the same energy as one of
the acceptor’s electron states, then the representation of the
electron as belonging to the globule or the acceptor separately
makes no sense.If acceptor is far from the globule, then it |is
significant which is the value of the tunnelling matrix element L
of the electron transfer (13). For a large-radius state it may be
several orders that of a small-radius state.

Every excited self-consistent state may be ascribed
configuration coordinates. For a consistent description of
electron transfer it is necessary to take 1into account that
electron can jump into intermediate selfconsistent states of
acceptor and only then go to the ground state. Therefore a

complex picture of electron

transfer may be possible with U

branching the chemical reaction

coordinate (see Fig. 6). This

example is a very simple case

where the electron from the A B

state B to the state C may

both be radiatory and non- g

radiatory, and in more general

cases cascade radiatory and non- 9

raditory processes are possible. Fig.6. Simple branching
The existence of excited of the configuration elec-

tron transfer coordinate q.
selfconsistent states may 1lead to

interesting effects on the lines of EPR and NMR, IR absorption
etc, which can be used to identify these states. The dlscussion

of these problems however is out of the scope of this paper.
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Appendix

Finding the polaron states in the globule

°

1
differential equations (6)-(7) with boundary conditions (11)

We shall seek spherically symmetric solutlons

the globule models of Figs. 1, 2. We start with passing over

new variables:

ue 172
r = ~——IL———T75 X, ¥(r) = é%L ( Z;, ) Y(X) ,
(2u{w])
(A1)
M(r) = l%L Z(X)
Normalization of the wave function ylelds:
4 ©
W =2 1 where T =J Y200X%X
h e T o
0
The relationships (A1) can then be rewritten as:
2 1/2
h ~ _.2 3/2_3.-3 Y(X)
r= 3 cOFX. W(r)-(;) m e’ h =377
2ue r €,
(A1)

-

3
M(r) = 2#: Z(X

n? ri:

o wn

We also introduce the notation &(X): @&(r) = l%L ®(X).

By substituting (A1) into (6) and (7) we get -equations

with spherically symmetric solutions

2 ~
d Y§X) + 2 dZ§X) + Y(X)(Z(X)+8(X)-1) = O
ax
2, (A2)
d X
), 24200 L a0v3 0 = o
dax

For the protein globule (Fig.1)

15
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€ €
N "o N 0
. xe, tx; e ) XK
®(X)= N
iR , X = XR ,
where XR is the scaled radius of the globule such that
e .
R = 5 £,TXp The new parameter N is proportional to the
2ue
charge q = Ze, so that
N = (2 )1/253_ =TIz iﬁ
|H| he €,
The piecewise-constant function @(X) breaks on the surface of
the globule so that
EO/E1 , X < Xp
2(X) =
1 s X = XR
Analogously, for the three-layer model of Fig.2:
rNen N i) o N )
F— * < (— - —) + (r - —) , X <
X € XR €, €, XR €, XR 1
1 2
- +N o N €o
¢(X)={ v = + +— (1 - —) , X, s X s X
X € sz €, R1 R2
N
X X > X
2
e/s1 , X < XR1
2(X) = e/c2 R XR = X < XR
1 2
1 , Xz X
Rz
The solutions of eqs. (A2) should satisfy the infiniteness
conditions following from (11), be finite at zero and meet the

corresponding internal boundary conditions at points of breaks in

the plecewlise-constant function
The boundary solutions for
£

2Y’ (0)+N t~° Y(0)=Y(w)=0,
1

2(X).

eqs. (A2) have the form

2 (0)=2(=)=0

16
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For the internal boundary conditions:

Y(XR.—0)=Y(XRi+O). Y (XR1—0)=YI(XR,+0)
i 1 (A3')
Z(XR _0)=Z(XR_+0)' Ciz (XR'—0)=81+12'(XR'*0]
i i i i
Here i = 1 for the two-layer globule (R =R, 52=E°) and i = 1,

2 for the three-layer globule (53= EO).

2°. The solutions of the problem (A2) with boundary
conditions (A3) and internal boundary conditions (A3’) were found
much the same way as the solutions of the polaron problem 1in a
homogeneous polar medium /12/. Besides, we used solutions
obtained for the F-centre.

The procedure of finding solutions is quite obvious for the
polaron problem in a homogeneous polar medium, therefore we shall
take this case to describe the algorithm. Then, as we have
already mentioned, we shall pass over to the problems which just

are our immediate interest.

2.1. The equations of the polaron in a homogeneous medium

can be regarded as the particular case of eqs. (A2) where ¢, =¢

i "o
and N = 0. The mathematical formulation reduces to finding the

solutions of the boundary-valued problem

Y“(X) + Y (X) + Z(X)Y(X) - Y(X) =0
(A4)

Zv(X) + S 2°(X) + Y2(X) = 0

P ISR

Y’ (0)=2’ (0)=0; Y(w)=2Z(0)=0

It was shown /11/ that this problem has a number of
solutions in which Zn(X) (n=0,1,2,...) monotonically tends to
zero as X » 0, and Yn(X) n times crosses the axis X, after which
it tends to zero as X -» w.

Now we change variables so that

£ = XY, n = XZ

and equations (A4) assume the form:

€7+ £(n/X - 1) = 0
(A5)
n"+ €2/X = 0
£(0)=7n(0)=0; £(o)=7'()=0 (A6)

17



2.2. The solutions of (AS5), which only satisfy the left-hand
boundary condition of (A6) in the neighbourhood of the point X =

0 may be presented as power series

£(X) = alx + a2X2 + a3X3 +

- 2 3
n(x) = blx + bZX + b3x + ...

If we substitute these series into (A5), Wwe can see that all

coefficients ai and bi are expressed in terms of alz a and blab.

Confining ourselves to several first terms of the series, we
can,at a point Xo which is not distant of X=0, find desiredly
accurate values of §(Xo;a.b) and n(Xo; a,b) and their

derivatives corresponding to concrete values of parameters a

and b.

2.3. For the system of differential equations (A5) we define
the Cauchy problem in the interval [XO,XKIA To this end, for X=
Xo (X0 is small), we determine §(Xo;a,b), €'(Xo;a,b); and
n(Xo;a,b) and n’(xo;a.b) at prescribed values of a and b. Then
the solution is found numerically on a computer by the standard
Runge-Cutta method.

Let us notice that the second equation of (AS) yields a
convex function 7(X), so that »“(X)<0 for all Xz0. This property
of n(X) is central in finding the solution of a boundary-valued
problem. If we succeed in choosing the values of a and b such
that n(X) tends to a constant as x 5 o, then £(X) will tend to
zero. This would mean a solution of the boundary-valued problem

(A5)-(A6) is found.

2.4. Now we choose the values of parameters a and b within
an interval [XO.X‘] and solve the emerging Cauchy problems. Fig.7
shows some of such solutions. Take an XK which corresponds to the
maximum of one of them, such that a=a* and b = b* (a* and b* -

concrete numbers). Define a function to be
F(a,b) = n’(XK;a.b).

Let us now take the Cauchy problem for a new interval [XO.X‘].
which , when solved for some a and b, will yield the values of

the function F(a,b). The equation
F(a,b) = 0 (A7)

is an implicit dependence between a and b. Here, the choice of Xl

18



determines one of the points of this dependence which is
F(a*,b*) = 0.

The dependence (A7) in the prescribed intervals of a and b
may be found with the CURVE program complex /22/. Figure 8 shows
a curve which was obtained with this program.

The solutions of the Cauchy problem for a and b along the
curve can be seen in Fig.9. An analysis of the curves £(X)
suggests the existence of a series of solutlons of the
boundary-valued problem (A5)-(A6). They may be arranged as
follows: En(X), with n = 0,1,2,..., n times crosses the axis X,
after which it exponentially tends to =zero; and nn(X) grows

monotonically to its extreme value nn(u).

11)()()
4
4 4
21 1
Fig.7. Functions n(X) for
various initial data given by a 0 X
and b: 1 - a=1.2, b=2.0; 2 - I0
a=1.1, b=2.0; 3 - a=1.02,
b=1.94; 4 - a=1.0, b=2.0 -2
4b
8
(o)
4
2' Fig. 8. Dependence between
a and b following from (A6)
1 a at X =10

2.5. Now we define a system of two functions of three

variables to be

Fl(a,b,XK) = E'(XK;a,b)

= 1 . (A8)
Fz(a,b,XK) = 9 (XK,a.b)

This definition means that for the values of F1 and F2 to

be determined the Cauchy problem should be solved in the interval
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Fig.9. Solutions of the Cauchy problem for various a and b
on the curve (A9) of Fig.8: a=0.733, b=1.664 (a); a=1.003,
b=1.921 (b); a=1.025, b=1.942 (c); a=0.623, b=1.662 (d); a=0.900,
b=2.074 (e); a=1.338, b=2.727 (f).

2
EI(X)
0 15 *
- 1
2 ';ﬂI(X)
A be

Fig.10. Solutions of the boundary-valued problem (A5)-(A6):
a = 1.021, b = 1.938 (a); a = 1.091, b = 2,320 (b).
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[X,,X ] with the initial values corresponding ‘to those of
parameters a and b. The values of €’ and % in the end of the
integration path give the values of the functions. The system of

equations

Fl(a,b,XK) =
- (A9)
Fz(a,b,XK) =
locates a curve in the space of variables a, b and Xx' We
determined pieces of several branches of the curve To this end,
we chose 1initial approximations to each branch from the
calculations above, after which ran the program CURVE to find

points of the curve (A9) which correspond to the values of the
variables a, b, and Xx in the prescribed range.

As XK > o ,the conditions (A9) are identical with the
right-hand boundary conditions (A6). Actually, in the polaron
problem we only had to go up to XK=1O for the zero mode (n=0),
xx= 15 for the first mode (n=1) and XK= 20 for the second mode
(n=2), to get the solutions of the boundary-valued problem
(A5)-(A6) accurate to several terms.

Figure 10 shows two of the solutions obtained by this

procedure.

3°. The F-centre problem differs from the polaron problem
for a homogeneous polar medium by additional terms NY/X 1in the
first of equations (A3), where N is the problem’s parameter. We

have sought solutions for various N on the curves which pass

through the polaron equations. The system of equations is

FI(N,a,b)
F_(N,a,b)
2

€’(XK;N,a,b)

n’ (X, ;N,a,b) (A10)

The curve (A10) started from the known values at N=0 for the
polaron states. The actual dependencies were found by the CURVE
program. To refine the solution for a given N we introduced new

functions

1]

F (a,b,X )
1 K
Fz(a.b.XK)

6'(XK;N.a.b)
n'(XK;N,a.b)

and proceeded the way of the polaron case for system (A9).
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4

how to find spherically symmetric polaron states 1in various

The above polaron and F-centre problems give an idea of

models of the protein globule. Let us only study 1into the
two-layer model of Fig.1, of which the case of many-layer models
differs merely by technical details.

The initial model (Section 4) takes as physical parameters
the values {€ ,e,,€ ,R,Z}. The boundary-valued problem (A2)-(A3)
contains XR and N, instead of R and Z, which are interrelated as

2
Xg = R 2pe” r-t
¢ n?
0
. (A11)
8O
N=2z 2T
€
0

[

Since the value of I = J Y?(X)X®dX is not known beforehand, the
o

values of XR and N, which figure in the equations and correspond

to preset globule radius R and charge 2, are neitherknown. What
is only know is their product

2pe’® Rz
n? %o

The right-hand side of (A12) contains world constants and model

= const (A12)

NXR =

parameters only. The dependence (A12) suggests the following
algerithm fer finding the solutions:

1-st step. We change variables as §£=YX, 9n=2X. Then,
representing £(X) and n(X) as power series
E(X) = a X + aXx® +
2
n(X) b X + b X" +

and substituting them into (A2), we find a two-parameter family
of solutions of differential equations (A2) in the neighbourhood
of the point X = 0 which satisfy the left-hand boundary condition
(A3). Parameters a and b are equal to Y(O)=g and 2Z(0) = g ,

respectively.

2-nd step. We start from the known solutions for the
F-centre. Let Y;, Z;, N* be the values of medium paramesers
which dftermine a mode of the F-centre. Then, by (A12), xK =
const/N . The system of equations is defined to be
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F1(Yo'zo'°1)
Fz(Yo’Zo’el)

£ (xx;yo’zo’e1)

, . (A13)
n (XK'YO'ZO'CI)

Put € = 80 and N = N*. Then the point (Yo’zo’e1)=(Y;’Z;’Co) will
belong to the curve (A13), because of the initial values of
parameters. We may make use of the CURVE program to locate the
branch of the curve which passes through this point. Therefore,
we can go from e = 80 to c1=20 the value which was found in the
two-layer model.

3-rd step. The system of equations is

G, (Y ,Z2 ,N)
1 0’70

G_ (Y ,Z ,N)
2 0’0o

3 (XK;YO,ZO,N)

/ . (lta)
N (XY, Z0,N)

It
o

Starting from the previous solution at co=80, £1=20 and
appropriate parameter values of Yo, 20, N, we locate the branch
of the curve (A14) by the CURVE program. Then we calculate I =

0
J YZXZdX, at each of the found points of the curve, and put
o

he

R = XRF

R Y

N

n
==
MIOPN

2ue

(=]

We can move along the curve until we reach the parameters R =
158 and Z =1 (by (A12) these values will emerge at a time). In
this way, we can find a solution to this case of the

boundary-valued problem.

4-th step. If desired, the solution may be refined: XK
should become the parameter and should move towards larger
values. Examples of solutions for the globule’s polaron states

are shown in Fig. 4.

5°. The spectral electron’s characteristics in the potential
field of selfconsistent polaron states were found by solving the
linear Schroedinger -equation with potential U(X)=Zn(X)+$(X),
where Zn(X) is the n-th solution of the boundary-valued problen
(A2)-(A3). Here however are some limitations caused by the
function Zn(X) defined for a discrete sequence of wununiformly
spaced points only. It is a common practice to use linterpolation

formulae here. But we proceeded another way. We appended the
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linear Schroedinger equation

- 1(1;1)

E+eP+a) -ag=0 (A15)

by the following equations for polaron states

£" + E(n/X + &) - £ = 0
. (A16)
n” + 2(X)E°/X =0

and combined the three 1into a one system of differential
equations. The variable { is not included in (A16), therefore
n(X) of (A1S5) emerges every time in one and the same form, which
also corresponds to the polaron mode at points conforming to
(A15) and is independent of the values and 1initial data for
g(X). At given 1 (orbital moment) and n (number of zero) A was
found by half-division procedure. The results are given in
Table 1.

The authors are thankful to L.V. Lunevskaya and O.M.
Liginchenko for their help in preparing the manuscript.
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